

Principles	Т
 •Abundance and uncertainty of information → aggregation In several dimensions Products Products Time Resources • The closer to real production The more details, The shorter horizons, •Complexity → decomposition and relaxation Capacity and material flow oriented subproblems Focusing on Resource constraints Temporal constraints Solution of simplified (sub)problems • Examples MRP with infinite capacity Capacity planning without temporal relations 	
BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering	4

The dilemma of planning Control over the uncertain future Goal: meeting market demand · Based on information what is Basic problem • Certain (products, technology, · Produce only what is needed resource capability) - not more, not less, • Uncertain (market demand, - not later, not earlier, resource and material - just in the required quality availability) · At minimum cost Asymmetric (supply chain, production network) - Production, - Logistics, Results: plans of future courses of actions over time - Environmental, ... Production Inventory holding · Capacity investment Subcontracting Material supply, BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering t1

MRP history	T
 '60s: MRP IBM, Joseph Orlicky MRP: <i>Material Requirements Planning</i> Application of computers in production planning '70s: proliferation in the USA MRP Crusade '80s: MRP II <i>Manufacturing Resource Planning</i> Planning with infinite capacities System integration '90: ERP <i>Enterprise Resource Planning</i> Software revenue: 1 billion USD/year '00: SCM <i>Supply Chain Management</i> 	
BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering	8

Basic concepts	Т
 •Time Discrete periods, so called time buckets One week, one day, Finite horizon •Orders (demand) Product, quantity, due date External independent demand For end items (or spare parts) Master Production Schedule Generates Gross Requirements • Internal demand What, when and how much to produce so as to meet external demand? Planned Order (Job) Start: Planned Order Release Finish: Planned Order Release Finish: Planned Order Release Start: Planned Order Release Start: Planned Order Release Start: Planned Order Release Start: Planned Order Release 	
BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering	10

Basic concepts (2)	
 Inventories On-hand inventories Quantities actually on the shelves Projected inventories Availability projected for future periods Product structure Bill of Materials (BOM) Assembly tree, gozinto graph Certain information 	
BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering	11

BOM (3)	1
 Properties Tree structure Nodes, edges, parent – child relations Root: end item Children: component to be included Inclusion of several instances At several levels Into several end items Low-level code (LLC) End item: LLC = 0 Child: LLC(parent) + 1 When at several levels: LLC = max(LLC_i) Examples LLC(B) = 0 LLC(#100) = max(1,2) = 2 LLC(#300) = max(2,1,3) = 3 	
BME Gvártástudomány és -technológia Tanszék	14
BME Department of Manufacturing Science and Engineering	14

MRP input data	
 Independent demand for end items Master Production Schedule (MPS) What, when, how much to have ready Item master data For each product BOM Planning Lead Time 	
 Internal material flow On-hand Inventory For end items and subassemblies alike Scheduled Receipts Quantities scheduled for given due dates Jobs under processing in the factory Receipt scheduled from external supplier 	
BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering	16

Th	e MRP process (2)
1.	Netting: Determine net requirements by subtracting on-hand inventory and any scheduled receipts from the gross requirements. The gross requirements for level-zero items come from the MPS, while those for lower-level items are the result of previous MRP operations. Calculation of net demand, based on gross requirements, on-hand inventory and scheduled receipts Gross requirements End items: <i>Master Production Schedule</i> (MPS) Subassembly: result of previous level's MRP Starting at end items (LLC = 0)
2.	Lot sizing: Divide the netted demand into appropriate lot sizes to form jobs. • Making lots (batches) out of net demand,
3.	Time phasing: Offset the due dates of the jobs with lead times to determine start timesFrom due dates back to release dates.
4.	 BOM explosion Use the start times, the lot sizes, and the BOM to generate gross requirements of any required components at the next level. Generating gross requirements for subassemblies On the next LLC Gross requirements coming from several parents aggregated
5.	Iteration Until subassemblies on all LLC levels are processed
GJ	BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering

Simple example									
Conditions <i>MPS</i> is given No <i>Scheduled Reco</i> On-hand inventory 	<i>eipt</i> : 30 u	nits							
Part A		1	2	3	4	5	6	7	8
Gross requirements 15 20 50 10 30 30 30							30		
1. Netting					1			ł	
Part A		1	2	3	4	5	6	7	8
Gross requirements		15	20	50	10	30	30	30	30
Projected on-hand	30	15	-5	-	-	-	-	-	-
Net requirements		0	5	50	10	30	30	30	30
					•				
BME Gyártástudomány és -te BME Department of Manufac	chnológia turing Scie	a Tanszék ence and Ei	ngineering						22

Simple example (2)

- 2. Lot sizing
 - Fixed quantity: 75 unit per lot
 - · Starting a lot whenever demand is uncovered, even partially
- 3. Time phasing
 - When to start production? Example: fixed planning lead time: 1
 week

To determine when to release the jobs (if made in-house) or purchase orders (if bought from someone else), we simply subtract the lead time from the time of the planned order receipts to obtain the planned order releases

obtain the plained with releases.		1	2	3	4	5	6	7	8
Gross requirements		15	20	50	10	30	30	30	30
Projected on-hand 30		15	-5	-	-	-	-	-	-
Net requirements		0	5	50	10	30	30	30	30
Planned order receipts			75			75		75	
Planned order releases		75			75		75		
		•							

BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><section-header>

1. Netting	Т
 Task Cover each amount of gross requirement Without loosing quantities Without delay 	
 Strategy First, cover from on-hand inventory Next, re-schedule scheduled receipts Forward/backward Finally, launch new planned orders 	
BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering	26

Part A	1	2	3	4	5	6	7	8
Gross requirements	15	20	50	10	30	30	30	30
Scheduled receipts	10	10		100				
Adjusted SRs								
Projected on-hand 2	0							
Net requirements								
Planned order receipt	ts							
Planned order release	es							

BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering

GT

Example: netting									
Part A		1	2	3	4	5	6	7	8
Gross requirements		15	20	50	10	30	30	30	30
Scheduled receipts		10	10		100				
Adjusted SRs			20	100					
Projected on-hand	20	5	5	55	45	15	-15	-	-
Net requirements							15	30	30
Planned order recei	.pts								
Planned order relea	ses								

<u>Second period</u>: the gross requirement of 20 exceeds the five in stock, and so we issue a change notice to defer the SR with 10 from period 1 to period 2. This still provides only a total of 15 units, five less than what is needed. <u>Add</u> the second SR to period 2, bringing the total to 25 units. Since this SR is already scheduled for period 2, we do not need to generate a change notice. An so on....

This more than covers the 10 units in period 4, leaving 45, as well as the 30 in period 5, leaving 15 units. The demand in period 6 exceeds the projected on-hand inventory, and there are no more SRs to be adjusted. Thus, the first uncovered demand occurs in period 6 and is equal to 15.

 BME Gyártástudomány és -technológia Tanszék
 29

 BME Department of Manufacturing Science and Engineering
 29

Netting cont.	Т
The net requirements are now easily computed.	
For periods 1 through 5they are zero because projected on-hand inventory is greater than zero.	
For period 6 they are 15, simply the negative of projected on-hand inventory.	
For periods 7 and 8 the net requirements are equal to the gross requirements, both of which are 30.	
 Moving SRs Only if necessary Towards the future: defer Towards the present: expedite Quantities not split 	
BME Gyártástudomány és -technológia Tanszék Váncza J. BME Department of Manufacturing Science and Engineering Váncza J.	30

2. Lot sizing	T
•Task • Decreasing the cost of set-ups • Though, lots increase inventories of end items and WIPs • WIP: <i>Work in Process</i> • Various compromises •Assumptions	
Deterministic demandMaybe different from time period to time period	
 Simple rules Lot for lot (LFL) In each period, same as the net requirement Does nor combine the demand of several periods Fixed order period (FOP) Combines the demand of <i>P</i> periods If <i>P</i> = 1, then LFL In our running example let <i>P</i> = 2 	
BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering	31

Example: lot sizing								T
Part A	1	2	3	4	5	6	7	8
Gross requirements	15	20	50	10	30	30	30	30
Scheduled receipts	10	10		100				
Adjusted SRs		20	100					
Projected on-hand 20	5	5	55	45	15	-15	-	-
Net requirements						15	30	30
Planned order receipts						45		30
BME Gyártástudomány és -technolo BME Department of Manufacturing	ógia Tanszék Science and	c Engineerin	g					32

3. Time phasing	ANT
Task • Determine the release (start) time of new planned ord Assumptions • Infinite capacities • Fixed, a priori known (estimated) lead times – Independent of • Actual load • State of the factory • Lot size • Component/material availability	ders
Process Simple backward calculation from the due dates 	
BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering	33

Example: time phas	sing							
Part A	1	2	3	4	5	6	7	8
Gross requirements	15	20	50	10	30	30	30	30
Scheduled receipts	10	10		100				
Adjusted SRs		20	100					
Projected on-hand 20	5	5	55	45	15	-15	-	-
Net requirements						15	30	30
Planned order receipts						45		30
Planned order releases				45		30		
BME Gyártástudomány és -technol BME Department of Manufacturing	ógia Tanszél Science and	< Engineerir	ng					34

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><section-header>

Exai	mple	e: B	OM	expl	losi	on							T	
Part B	8 data Gross	requ	iremen	it (MP	S)									
			t	1	2	3	4	5	6	7	8	7		
		M	PS	10	15	10	20	20	15	15	15]		
Masi	ter prode Maste	er dat	a and e	emand earlier	plan sc	hedu	ıled	1.			~	load time		
	pa	rt	on-hand		r dı	receipt lot-sizing lue qty rule		lot-sizing rule		rule		9	(week)	
	E	3	4	0	0)		FOI	2, 2	wee	ks	2		
	#1	00	4	0	0)			LF	Ľ		2		
	#3	00	5	0	2	2	100		LF	'L		1		
	#5	00	4	0	()			LF	'L		4		
													<u> </u>	
Gel	BME BME	Gyártást i Departm	udomány é ent of Man	s -techno ufacturin	l ógia T a g Scienc	i nszék e and Ei	ngineerin	g				:	36	

MRP: Part B

Since there are no scheduled receipts for part B, the MRP calculations for this part are simple:

Part B		1	2	3	4	5	6	7	8
Gross requirements			15	10	20	20	15	15	15
Scheduled receipts									
Adjusted SRs									
Projected on-hand	40	30	15	5	-15	I	-	-	-
Net requirements				15	20	15	15	15	
Planned order recei				35		30		15	
Planned order relea	ses		35		30		15		

BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering

MRP: Part #500

GT

- Demand only from Part B (The only source of demand for part 500 is from part B) LLC = 1 ٠ •
- **Exception report** (Because the lead time for part 500 is four weeks, there is not enough time to finish the first 25 units before week four. Therefore, a planned order release is scheduled for week one (as soon as possible) with an indication on an exception report that it is expected to be late.) •
 - Work should ha started in riod 0 (r

Work should have started in period 0 (present)
No solution of the MRP problem

Part #500		1	2	3	4	5	6	7	8
Requirements from B		35		30		15			
Gross requirements			35		30		15		
Scheduled receipts									
Adjusted SRs									
Projected on-hand	40	5	5	-25	-	-	-	-	
Net requirements				25		15			
Planned order recei	pts				25		15		
Planned order relea	ses	25*	15						
BME Gyártástudomány és -te BME Department of Manufact	chnológia turing Scie	i Tanszék ence and En	gineering						38

	MRP:	Part	#100	
--	------	------	------	--

• Demand from Part A and subassembly #500

• LCC = 2 (no schedueled receipts).

Part #100		1	2	3	4	5	6
Required from A					90		60
Required from #500		25	15				
Gross requirements		25	15		90		60
Scheduled receipts							
Adjusted SRs							
Projected on-hand 4	40	15	0	0	-90	-	-
Net requirements					90		60
Planned order receip	ts				90		60
Planned order releas	es		90		60		

BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering

MRP: Part #300 Part #300 1 2 3 4 5 6 7 8 Required from B 15 35 30 Required from #100 90 60 Gross requirements 125 90 15 Scheduled receipts 100 Adjusted SRs 100 50 25 _ Projected on-hand 50 25 -65 -_ _ Net requirements 65 15 Planned order receipts 65 15 Planned order releases 65 15 BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering GE

MRP: output						
Transaction	Part #	Old Due	Rel. Date	New Due	Qty	Notice
Change notice	A	1		2	10	defer
Change notice	A	4		3	100	expedite
Planned order release	A		4	6	45	OK
Planned order release	A		6	8	30	ОК
Planned order release	в		2	4	35	OK
Planned order release	в		4	6	30	OK
Planned order release	в		6	8	15	ОК
Planned order release	100		2	4	90	ок
Planned order release	100		4	6	60	ОК
Planned order release	300		3	4	65	ок
Planned order release	300		5	6	15	ок
Planned order release	500		1	4	25	Late
Planned order release	500		2	6	15	ОК

BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering

GI

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Economic Order Quantity (EOQ)	4	T
 •Assumptions Production is instantaneous Thanks to the infinite capacity Delivery is immediate Demand is deterministic and its rate is constant E.g. if annual demand is 365 units, then daily demand is 1 A production run incurs a constant setup cost Products can be analysed singly •Notation D = Demand rate, [unit/year] c = Unit production cost (without setup and holding costs A = Constant setup / ordering cost for a lot [\$/lot] h = Holding cost [\$/unit/year]) [\$/unit]	
If holding cost consists entirely of interest of money tie then $h = i^*c$, where <i>i</i> is the annual interest rate Q = Lot size [unit]: decision variable	ed up in inventor	у,
BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering	44	

Lot sizing: FOP										T
 Fixed Order Period If production is started in subsequent <i>P</i> periods, too If <i>P</i> = 1, LFL 	perio	od <i>t</i> , t	hen p	rodu	ce the	e dem	and o	f the		
Period	1	2	3	4	5	6	7	8	9	
Net requirements		15	45			25	15	20	15	
Planned order rec.		60				60			15	
•Determining <i>P</i> on the basis of EOQ $\overline{D} = 135/9 = 15, A = 150, h = 2$ $Q = \sqrt{\frac{2A\overline{D}}{h}} = \sqrt{\frac{2 \times 150 \times 15}{2}} = 47.4$ $P = Q/\overline{D} = 47.4/15 = 3.16 \approx 3$										
BME Gyártástudomány és -technológia Tanszék 50 BME Department of Manufacturing Science and Engineering 50							50			

Safety buffers	
Handling uncertainty MRP is deterministic, reality is not Sources of uncertainty Demand change (quantity, timing) Changing production times Changing yield (scrap production) Safety stocks (SS) Against demand uncertainty Calculation Projected on-hand is decreased by SS Safety lead time (SLT) Handing uncertainties in timing Pushing due dates earlier As of the lead time would be longer 	
BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering	51

Example: safety stock											T
S q	Safety stock should be used to protect against uncertainties in production and demand <i>quantities</i> , while <i>safety lead time</i> should be used to protect against uncertainties in production										
a	and demand <i>timing</i> . This time we compute the first net requirement as we did before, but										
	SS = 10 we subtract an additional 10 units for the desired safety stock. The projected on-hand <i>minus safety stock</i> first becomes negative in period 3									3	
	FOP, $P = 2$ (as op	posed t	o perio	d 4 befo	ore).						
	Part B		1	2	3	4	5	6	7	8	
	Gross requirements		10	15	10	20	20	15	15	15	
	Scheduled receipts										
	Adjusted SRs										
	Projected on-hand	40	30	15	5	-	-	-	-	I	
	Projected on-hand - SS	30	20	5	-5						
	Net requirements				5	20	20	15	15	15	
	Planned order rece	ipts			25		35		30		
	Planned order relea	ases	25		35		30				Í
	BME Gyártástudomány és - BME Department of Manufo	technológia acturing Sci	a Tanszék ence and Er	ngineering						52	

Example: safety lead time									
 Planned lead time = 2 Safety lead time = 1 									
Part B	1	2	3	4	5	6	7	8	
Gross requirements	10	15	10	20	20	15	15	15	
Scheduled receipts									
Adjusted SRs									
Projected on-hand 40	30	15	5	-15	-	-	-	-	
Net requirements				15	20	15	15	15	
Planned order receipts				35		30		15	
Adjusted POR			35		30		15		
Planned order releases 35 30 15									
Danger: self-fulfilling prophecy Because of increased WIP, lead times will really grow!									
BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering 53								53	

Proble	ems of MRP		T
Capaci	ties neglected Infinite capacity assumption Result: infeasible plans – Especially if the system is working close to congestion – It is enough to overload a single resource		
Longel •	r lead time than necessary For safety's sake – Larger inventories Meeting due dates has usually higher priority		
Systen	n nervousness Small changes in input may lead to drastically different orders Sometime even a small <i>decrease</i> of demand may caus	t internal planne e infeasibility	ed
GL	BME Gyártástudomány és -technológia Tanszék BME Department of Manufacturing Science and Engineering		54

