Manufacturing Systems

Made by Dr. István Németh 2019

Subject:

Machine Design and Production Technology

BMEGEGEMW01

Lecturer:

Dr. István Németh
associate professor
inemeth@manuf.bme.hu
Bld. T, 4th floor, office 44/b

Gyártástudomány és -technológia Tanszék Department of Manufacturing Science and Engineering

Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest University of Technology and Economics

Introduction: Manufacturing Technologies

- Component production (Shape giving technologies):
 - Material removal, material separation
 - E.g. metal-cutting → metal-cutting machine tools (e.g. lathe, sawing machine, grinding machine)
 - Additive technologies
 - E.g. rapid prototyping, 3D printing
 - Forming and shaping
 - E.g. rolling, forging, extrusion, sheet forming
 - Casting
 - Material joining
 - E.g. welding, soldering, mechanical joining
 - Etc.
- Assembly

Topics of the Lecture

- Manufacturing automation
- Equipment and layouts of manufacturing systems
- Examples: mainly metal-cutting technology:
 - machine tool = metal-cutting machine tool
 - robot = industrial robot

Metal-Cutting Machining

- Machining by material removal (chips)
- Relative motion between the Tool(s) and the Workpiece(s)
- Cutting force

Primary motion (speed)

- n [1 /min]
- v [m/min, m/sec]

Secondary motion (feed)

- f [mm/rev, mm/min]
- d [mm]

The Beginning (1)

Fully manual wood lathe (around 1425)

Primary motion (speed) and force (= power): by foot

Secondary motion (feed) and force (= power and position): by hand

The Beginning (2)

Further development steps: transmission (steam engine), automatic tool movement (Maudslay)

The Beginning (3)

Engine lathe (around 1840). Lead screw, interchangeable gears, stepped pulley (Maudslay, Roberts, Fox és Whitworth)

Multi-spindle automatic lathe (patent in 1894 in the USA)

Aims of Manufacturing Automation

- Improve productivity
 - more efficient material handling
 - machines are used more effectively → minimise cycle times and effort
 - production is organised more efficiently
- Reduce manufacturing costs
- Improve quality
- Reduce human involvement
 - boredom
 - possibility of human error
 - dangerous tasks
- Reduce workpiece damage
- Integrate manufacturing operations
- Raise the level of safety
- Economise on floor space
 - arranging machines, material movement, and auxiliary equipment more efficiently

History of Manufacturing Automation

1750s	Industrial revolution.
1800-1900	Turret lathe, universal milling machine.
1900-1920	Geared lathe, automatic screw machine.
1920	First use of the word 'robot'.
1920-1940	Transfer machines; mass production.
1940	First electronic computing machine.
1952	First prototype of NC machine tool.
1960s	Industrial robots. Just-in-time production systems.
1968	PLC.
1970	First integrated manufacturing system; spot welding of automobile bodies with robots.
1970s	Microprocessors; flexible manufacturing systems; group technology.
1980s	Artificial intelligence; intelligent robots; smart sensors; untended manufacturing cells.
1990s	Integrated manufacturing systems; intelligent and sensor based machines; global manufacturing networks.
2000s	Additive technologies; multi-task and hybrid machine tools; mass customisation; reconfigurable manufacturing systems.
2010s	Internet of things; smart factories; Web-, agent-, cloud-based manufacturing, Cyber-physical production systems

The 4th Industrial Revolution - "Industry 4.0"

The same history simplified and presented with fashionable words (introduced in Germany):

1st Industrial Revolution

1782 – Power generation → *Mechanical Automation* (water power, steam power, machine tools)

2nd Industrial Revolution

1913 – Industrialisation, mass production → *Electric Automation* (conveyor, assembly line, electric power)

3rd Industrial Revolution

1954 – *Electronic Automation* (computer, NC, PLC)

4th Industrial Revolution – "Industry 4.0"

2015 - Smart Automation

(sensors, internet of things, cloud computing, cyber physical systems)

Industrial Revolutions

Types of Automation

- Hard Automation
 - very high number of products (e.g. engine blocks)
 - low flexibility (≈0)
- Soft Automation
 - (flexible or programmable automation)
 - medium-high number of products
 - high flexibility

Classification of Machine Tools (1)

- Machine tools for defined cutting edge (cutting)
 - Primary motion: Translation
 - Broaching machines
 - Band saw and Hacksaw
 - Planer
 - Shaper
 - Primary motion: Rotation
 - Turning machines, lathes
 - Milling machines
 - Drilling machines
 - Machining centres
 - Turning centres
 - Gear manufacturing machines
 - Transfer machines and systems

Classification of Machine Tools (2)

- Machine tools for undefined cutting edge (abrasive)
 - Grinding machines
 - Cylindrical grinder
 - Surface grinder
 - Centreless grinder
 - Honing machines
 - Lapping machines
- Non-conventional (erosion)
 - Electrodischarge machining
 - Electrobeam machining
 - Ultrasonic machining

Classification of Machine Tools (3)

- Multi-task machines
 - Turning + Milling
 - Milling + Grinding
 - Turning + Electrodischarge machining
- Hybrid machines
 - machining process + other manufacturing processes
 - machining + laser heat treatment
 - machining + rolling
 - subtractive technology + additive technology

Selection of Machine Tools (1)

- Maximum part size
 - Machine workspace must be greater than the workpiece size
- Workpiece main geometry
 - global shape of the part
 - cylindrical → lathe
 - prismatic → milling machine
 - number of complexity of the details
 - complex geometry → complex machine tool
- Type of the manufacturing process, type and number of tools needed
- Material removal rate
 - productivity / production rate
- Precision
 - accuracy
 - repeatability

Selection of Machine Tools (2)

Precision (cont.)

A comparison with the boring machine by J. Wilkinson in 1775 "which bores with a thickness error of one shilling in a fifty-seven inch diameter" (2 mm in 1500 mm),

Selection of Machine Tools (3)

- Kinematic behaviour (i.e. speed and acceleration)
 - to calculate the work-in-progress and idle movements
- Batch size
 - determines the automation level of machine tools and the use of auxiliary devices (tool change, workpiece change, multi-machine system)
- Price → life cycle costing point of view
- Environmental impact
- Ergonomics
- Design
- Comply with existing standards
- Etc.

Drilling on a Drill Press

The drilling process

Drilling Machines

radial drilling machine

CNC drilling machine

[5]

Cylindrical Turning on an Engine Lathe

The turning process

[3]

Slab Milling on a Knee-type Horizontal Milling Machine

Lathes with Different Level of Automation (history of the automation of lathes)

Turret lathe

Cam controlled lathe

Plug/cycle controlled lathe

CNC controlled lathe

turning process

Turret Lathe

Automatic Bar Machine

b: cam

d: rocker

f: vertical slide

Other name: Swiss-type automatic screw machines (single spindle)

Automatic Bar Machine (Index)

Plug/Cycle controlled lathe

The plug/cycle controlled lathe was a transition between mechanically controlled and NC/CNC machine tools

NC, CNC

- NC Numerical Control
- CNC Computer Numerical Control

CNC Integration (1)

CNC Integration (2)

- User interface
- Basic operating system (PC based today)
- Program translator
 - ISO codes
 - G, M codes (e.g. G01 X100 Y200 Z300 F2000 S8000)
 - Special NC languages (per manufacturer)
 - STEP NC
- Interpolator
 - linear, circular, etc.
- Axes control
 - sensors (position sensors: rotary encoder or linear scale)
 - motors and their servoamplifiers, high voltage power amplifier unit
 - feed back control techniques (e.g. PID)
- PLC (Programmable Logic Controller)
 - to control the auxiliary machine functions (M functions in ISO) such as tool change, coolant on/off, etc.

Advantages of Application of CNC Machine Tools

- Increased flexibility
 - easy to setup from one part to another
- Greater accuracy
 - computers have a higher sampling rate and faster operations
- More versatility
 - editing and debugging programs, reprogramming
- Higher productivity
- Integration into a system is easier

CNC Lathe

Machining Centres

- CNC machine tool with rotating tool
- Automatic tool change
 - increased productivity
 - increased accuracy (fewer error caused by part change)
 - fewer machines required

Typical workpieces:

milling-drilling process

Turning Centres

C and Y axes machining

Turning + Milling-drilling processes

C, Y and B axes

Hybrid Machine Tools

Additive technology (MPA)

Cutting technology (subtractive)

[22]

Workpiece Load/Feed/Unload on Machine Tools

Workpiece Feeding of CNC Lathes

(Chip conveyor)

Automatic Pallet Change

5-axis machining centre with tower tool magazine + pallet changer

Starrag Heckert HEC X5 series

Material Handling Equipment

- Storage equipment
 - racks
 - stacking frames
 - shelves, bins and drawers
 - mezzanines
 - etc.
- Intermittent operation material handling machinery
 - cranes
 - industrial trucks (e.g. forklifts, automatic guided vehicles (AGVs))
 - robots
 - etc.
- Continuous operation material handling machinery
 - conveyors
 - power or free
 - overhead or floor: belt, roller, chain
 - elevators
 - etc.

Automated Guided Vehicles (AGVs)

- Several transporting solutions
 - load carrier, tractor, fork lift, etc.
- Several steering solutions
- Path control
 - Wire-guided
 - Light-guided
 - Free-ranging
 - Image processing

Industrial Robots

- Programmable multifunctional manipulator designed to move materials, parts, tools or other devices.
- Basic kinematics + end effector
- "Programmable":
 - playback robot
 - numerically controlled robot (similar to NC/CNC machine tools)
 - intelligent robot (sensory robots)

BMW's robotic welding line, in Spartanburg, S.C. [19]

[5]

Basic Kinematics of Industrial Robots

Parallel kinematics

Source: Tricept model, Visual Components Library

Application of Industrial Robots in Manufacturing

- Material handling: loading, unloading, transferring
- Spot welding, arc welding, arc cutting, riveting
- Deburring, grinding, polishing
- Applying adhesives and sealants
- Spray painting
- Assembly
- Inspection and gauging
- Machining (drilling, milling)
- Other (laser welding)

Robotic Loading of Machine Tools

Conveyors (few examples of many types)

Roller conveyor [18]

Flexible chain conveyor

Conveyors (few examples of many types)

Machining (Milling) Cell

- Machining centre
- Automatic workpiece change (e.g. pallet changer)

Automatic workpiece store (e.g. pallet store)

Manufacturing System (definition)

- "System"
 - Greek "systema" = to combine
 - Today "system" = An arrangement of physical entities, one characterised by its identifiable and quantifiable interacting parameters.
- Manufacturing System:
 A large number of interdependent activities consisting of distinct entities (such as materials, tools, machines, power, and human beings)

Production paradigms

[3]

Production Categories

Categories of Manufacturing Systems (1)

productivity

Categories of Manufacturing Systems (2)

- Job shop
 - a set of independent general purpose machine tools
- Flexible Manufacturing Cell (FMC)
 - Cell around a machine tool (mini-cell)
 - Cell of few machine tools
- Flexible Manufacturing System (FMS)
 - Integration of several machine tools and material handling equipment
 - Integration of manufacturing cells

Hard Automation: Transfer Machines, Transfer Lines

Strait pattern

Circular pattern

Components of Flexible Manufacturing Automation

- NC, CNC machine tools and/or machining units
- Automatic tool and workpiece change
- Computerised system control
- Sensors
- Automatic (flexible) material handling
- Automatic (flexible) fixturing

Flexible Manufacturing System (FMS)

- CNC machine tools
- Automatic material handling system
- Central computer control
- Flexibility in
 - product variety
 - production quantity
- Random input → smaller inventory
- Tool store, tool management
- Higher level integration: integration of several manufacturing processes (e.g. cutting + assembly)

Transfer line vs. Flexible Manufacturing System

Characteristic	Transfer line	FMS
Types of parts made	Generally few	Infinite
Lot size	>100	1-50
Part changing time	0,5 – 8 hour	1 minute
Tool change	Manual	Automatic
Adaptive control	Difficult	Possible
Inventory	High	Low
Production during break down	None	Possible
Justification for capital expenditure	Simple	Difficult

Manufacturing System Layouts

- Static
- Product
- Process
- Group technology

Manufacturing System Layouts:

1. Static Layout (fixed position product)

- Manufacturing equipment move to product (e.g. ship, aircraft).
- Flexible layout: easy to change for new product.
- High personnel skill requirements.

[13]

Manufacturing System Layouts:

2. Product Layout

Manufacturing System Layouts: 2. Product Layout

- Most of the production plants has this layout
- Typical application area:
 - High volume, low variety
- Need for special-purpose equipment
- Low flexibility: if the product changes, it may require changes in the layout, which may be costly.

Raw materials

- Labour skill requirement is low as most of the tasks are simple.
- Material flow is smooth, simple and logical → simple production control.
- Requires highly reliable equipment since failure at one workstation may cause the stoppage of the whole line.

[4], [13]

Discrete machines or operators

Conveyor or dedicated transfer link

Manufacturing System Layouts:

3. Process Layout

[4]

Manufacturing System Layouts: 3. Process Layout

- Typical application area:
 - Low volume, high product variety
 - Batch or job-shop manufacturing system
- General-purpose equipment grouped according to the manufacturing processes.
- Labour skill requirement is high.
- More complex material flow.
- Higher flexibility, but lower efficiency.
- Investment in equipment is higher but utilisation is lower.
- More complex production control.
- Higher inventory level.

[4], [13]

Group Technology (GT) (Design & Production !!)

- Grouping the parts according to similarities:
 - Design similarities:
 - shape
 - size
 - functions
 - Manufacturing process similarities
 - process type
 - surface roughness, tolerances
 - machine tool types
- Classification and coding using IT tools
- GT connects the design and production databases

GT example: groups of shafts and disc parts

[5]

Manufacturing System Layouts:

4. Group Technology Layout

(T: Turning; M: Milling; D: Drilling; SG, CG: Grinding)

Manufacturing System Layouts: 4. Group Technology Layout

- Products are grouped in part families.
- Each part family is assigned to a group of machines and this machine group along with the material handling equipment form a cell.
- Integration of the cells into a system
- GT layout combines the advantages of mass production and job shop production → higher volume + more flexibility
 - economic, efficient (mass production; product layout)
 - flexible (job-shop production; process layout)

[13]

Advantages of Group Technology

- For Design
 - Standardisation of design
 - Fast design (drawing) retrieval
 - Fast adaptation of new designs
- For Production Planning
 - Reduction of the number and planning time of process plans
 - Reduction of the number and creation time of NC codes
 - Simplified machinability analysis
 - Reduction of the number and types of tools and fixtures; easier design of tools and fixtures
- For Manufacturing
 - Lower setup times
 - More efficient equipment design
 - Better utilisation of manufacturing equipment
 - More flexible and faster supply of urgent orders
 - Better quality
 - Easier production control (capacity planning, load balancing, scheduling)

References

- [1] L.N. López de Lacalle, A. Lamikiz (Editors): Machine Tools for High Performance Machining, Springer-Verlag London Limited, 2009, ISBN 978-1-84800-379-8
- [2] Reza A. Maleki: Flexible Manufacturing Systems, Prentice-Hall, Englewood Cliffs, 1991, ISBN 0-13-321761-2
- [3] Geoffry Boothroyd, Winston A. Knight: Fundamentals of Machining and Machine Tools, Second Edition, Marcel Dekker, Inc., New York and Basel, 1989, ISBN 0-82-47-7852-9
- [4] D. J. Williams: Manufacturing Systems An introduction to the technologies, Second Edition, Kluwer Academic Publishers, 1994, ISBN 0 412 60580 5
- [5] S. Kalpakjian, S.R. Schmid: Manufacturing Engineering and Technology, Fourth Edition, Prentice Hall, Upper Saddle River, NJ, 07458, 2001, ISBN 0-201-36131-0
- [6] Y. Altintas: Manufacturing Automation, Cambridge University Press, Cambridge, 2000, ISBN 0 521 65973 6
- [7] Dr. András Lipóth, lecture notes, Budapest University of Technology and Economics, 2003
- [8] Dr. Gusztáv Arz, lecture notes, Budapest University of Technology and Economics, 2009
- [9] NHX 4000/5000 Machining Centres, DMG Mori Seiki, www.dmgmoriseiki.com, 2013
- [11] Cselényi József, Lévai Imre: Anyagmozgatás és gépei II., Nemzeti Tankönyvkiadó, 3. változatlan kiadás, 1993, J 14-1671
- [13] Nanua Singh, Divakar Rajamani: Cellurar Manufacturing Systems Design, planning and control, Chapmen & Hall, London, 1995, ISBN 0 412 55710 X
- [14] A Critical Look at Industry 4.0, AllAboutLean.com, http://www.allaboutlean.com/industry-4-0/, 2016
- [15] Bleichert Inc., http://www.bleichert.com, 2016
- [16] Roboteq Inc., https://www.roboteq.com, 2016
- [17] Swisslog, KUKA Group, http://www.swisslog.com, 2016
- [18] Precision Conveyor Systems, http://www.precisionconveyor.org, 2016
- [19] Executive Summary World Robotics 2017 Industrial Robots, https://ifr.org/free-downloads, 2018
- [20] LIPRO, Pallet System-Chain PSC-90, Product Catalogue, http://www.lipro.si, 2015
- [21] Ford Model T, Wikipedia, https://en.wikipedia.org/wiki/Ford_Model_T, accessed in 2016
- [22] Martin Wener, Raising production levels in the future, Maschinenfabrik Berthold Hermle AG, conference presentation, Factory 2050 Conference, 25-26 May 2015, Sheffield, AMRC, The University of Sheffield

Examples of Test Questions

- What are the aims of manufacturing automation?
- What are the selection criteria of machine tools?
- 3. What are the primary motion and secondary motions of a lathe and a milling machine?
- 4. What sort of machine tools are called as 'machining centres'?
- 5. What sort of machine tools are called as 'turning centres'?
- 6. List two intermittent operation material handling equipment and two continuous operation material handling equipment.
- 7. Give the name of four manufacturing system categories and show their place in the 'productivity flexibility' (x-y) coordinate system.
- 8. Compare the transfer lines and the flexible manufacturing systems according to given characteristics.
- 9. Characterise the 'static layout' type of manufacturing systems.
- 10. Characterise the 'product layout' type of manufacturing systems.
- 11. Characterise the 'process layout' type of manufacturing systems.
- 12. Characterise the 'group technology' type of manufacturing systems.
- 13. What is group technology?

